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I. Introduction and Background



Introduction

• Cluster randomized trials (CRTs) 

allocate clusters (hospitals, nursing 

homes, clinics etc.) of individuals to 

intervention groups

o Minimize contamination 

o Administrative convenience

o Usually in parallel design

• Stepped wedge (SW) design rolls out 

intervention in a staggered fashion

o Cluster is the unit of randomization

o Cluster randomized to each step or wave

o Outcome measurements taken in each 

period
Step 1 Step 2 Step 3 Step 4



When is SW-CRT a good study design choice?

Four broad justification of using SW-CRT design 
(Hemming and Taljaard, 2020 IJE)

Can facilitate cluster recruitment when 
intervention perceived to be effective with 
minimum harm

Logistically feasible design by staggering the 
roll-out

Provides a means to conduct a randomized 
evaluation with full roll-out

Within-cluster before-after comparisons can 
increase statistical power

e.g., comparison of design effect 

(Hemming and Taljaard, JCE 2016)



Caveats for SW-CRTs

• But SW-CRTs can also be prone to risks of biases

o Identification and recruitment biases

▪ common to all CRTs with post-randomization recruitment 

o Complex and heterogeneous secular trend even in the absence of intervention

o Risks associated with extremely small number of clusters (Taljaard et al., 2016 Clinical Trials)

▪ Caution against 6 clusters or fewer

o Other implementation challenges (longer duration, retaining participants etc.)

• Decision to adopt an SW-CRT deserves a comprehensive evaluation by weighing 
potential benefits against risks in each specific trial context 



Objectives and Goals

• If proceed with the SW-CRT design:

o What are variants of SW-CRTs?

o What are available statistical methods and tools 
to assist in the design and analysis?

▪ Method of analysis (Li et al., 2020 SMMR)

▪ Sample size determination

▪ Two inter-connected aspects

o What are recommended practices?

▪ CONSORT extension to SW-CRTs

o What are the remaining issues? 



Main types of SW-CRT

• Repeated cross-sectional design

o enrolls new participants from each 

cluster during each period

• Closed-cohort design

o identifies a cohort at the beginning of the 

study and schedules repeated follow-up 

outcome assessments for the same cohort 



Main types of SW-CRT – Cont’d

• Repeated cross-sectional design implicitly assumes observed population is 
representative of the target study population

o Violation to which could result in selection/recruitment bias

o Often used when randomizing facilities in health care systems

• Closed-cohort design can require a strong effort in retaining participants

o Informative drop-out, or outcomes truncation by “death” leads to selection bias

o Can require a smaller total sample size compared to repeated cross-sectional designs due to 
correlations between repeated outcome measures

• Open-cohort design is a third option (Copas et al., 2015 Trials)



II. Design and Analysis of SW-CRTs with 
Mixed-Effects Models



Analytical models – mixed-effects models

• Unique features of SW-CRTs requires more complex considerations on analytical 

models than those in a parallel CRT

• Mixed-effects models

o Fixed-effects to control for discrete-time secular trend

o Intervention effect

o Random-effects to account for clustering

• Key ingredient of a mixed-effects model (Li et al., 2020 SMMR)

• Widely accessible from standard software; most used in SW-CRTs (Barker et al. 2016, 

BMC Med. Res. Methodol.)



The simplest “discrete time” linear mixed model 

• Model 1: Hussey and Hughes (2007) developed the random-intercept model for 

cross-sectional SW-CRT designs:

𝑌𝑖𝑗𝑘 = 𝜇 + 𝛽𝑗 + 𝛿𝑋𝑖𝑗 + 𝛼𝑖 + 𝜖𝑖𝑗𝑘
𝛼𝑖 ∼ 𝑁 0, 𝜏𝛼

2 , 𝜖𝑖𝑗𝑘 ∼ 𝑁(0, 𝜎𝜖
2)

o 𝜇 is the overall mean

o 𝛽𝑗 is fixed categorical secular trend (time effect)

o 𝛿 is the intervention effect

o 𝛼𝑖 is the random cluster effect

o 𝜖𝑖𝑗𝑘 is the independent error

• Between-cluster heterogeneity is induced by a single 𝛼𝑖 term, capturing the cluster-

specific departure from the average is assumed to be homogeneous across time 

periods and intervention sequences



Simple exchangeable ICC structure

• Intraclass correlation coefficient (ICC) 

defined as proportion of outcome total 

variance explained by between-cluster 

heterogeneity 

𝛼0 =
𝜏𝛼
2

𝜏𝛼
2 + 𝜎𝜖

2

• In model 1, a common 𝛼0 is implied for 

both observations within the same time 

period and between different periods

• Simple sample size formula and design 

effect are available (Hussey and Hughes, 2007; 

Woertman et al.; 2013)

For example, when 𝛼0 = 0.15



Modifications to accommodate “decay”

• Within-period ICC can be stronger than between-period ICC, and more flexible models 

should address the possibility that the strength of correlations may decay over time

• Two examples, when the within-period ICC remains 𝛼0 = 0.15



Nested exchangeable ICC structure

• Model 2: includes an additional random cluster-by-
time interaction (Hooper et al. 2016 Stat Med)

𝑌𝑖𝑗𝑘 = 𝜇 + 𝛽𝑗 + 𝛿𝑋𝑖𝑗 + 𝛼𝑖 + 𝑐𝑖𝑗 + 𝜖𝑖𝑗𝑘
𝛼𝑖 ∼ 𝑁 0, 𝜏𝛼

2 , 𝑐𝑖𝑗 ∼ 𝑁 0, 𝜏𝑐
2 , 𝜖𝑖𝑗𝑘 ∼ 𝑁(0, 𝜎𝜖

2)

• Between-period ICC (𝛼1) differs from the within-
period ICC (𝛼0) but stays constant over time

• Quantify the between-period ICC decay by cluster 
autocorrelation coefficient (CAC)

CAC = 𝛼1/𝛼0 = 0.5

• Analytical sample size formula available, requires 
CAC 



Exponential decay ICC structure

• Model 3: includes an additional random cluster-by-time 
interaction (Kasza et al. 2019 SMMR)

𝑌𝑖𝑗𝑘 = 𝜇 + 𝛽𝑗 + 𝛿𝑋𝑖𝑗 + 𝐶𝑃𝑖𝑗 + 𝜖𝑖𝑗𝑘

𝐶𝑃𝑖1, … , 𝐶𝑃𝑖𝐽
′
∼ 𝑁 0, 𝜏𝐶𝑃

2 𝑹 , 𝜖𝑖𝑗𝑘 ∼ 𝑁(0, 𝜎𝜖
2)

• 𝑹 is the first-order auto-regressive (AR1) matrix

• Between-period ICC (𝛼1
(𝑗,𝑘)

) decays at an exponential 
rate over time 

• CAC measures the rate of decay per period

• Unlike the previous models which are easy to fit in SAS 
and R, the exponential decay model is more difficult to fit 
(currently only possible in SAS)



Implications for correlation mis-specification 

• No consensus on how to choose a best fitting model yet

• Under-specification (omitting a necessary decay parameter) results in bias of the 
(model-based) variance of the treatment effect estimator (Kasza and Forbes, 2019 
SMMR)

o Assuming model 1 (CAC =1) when model 3 holds will underestimate variance (p-value too 
small, CI too narrow)

o Assuming model 2 when model 3 holds will usually underestimate variance (but can go 
both ways)

o Impact depends on strength of correlation decay, within-period ICC and cluster period sizes

• Over-specification (including a decay unnecessarily) does not lead to bias



Practical considerations in applying mixed-effects 
models

• Other model extensions include random intervention model and random time 
coefficient model

• Can be preferable due to the ability to flexibly specify random heterogeneity structure

• Available in standard software

o PROC MIXED, PROC GLIMMIX (SAS)

o nlme, lme4 (R)

• Model-based variance (standard software output) can be biased if random-effects 
structure mis-specified

• Interpretation of treatment effect also depends on the random-effects structure, 
especially for logistic mixed models with a binary outcome



Sample size for SW-CRTs with mixed-effects models

Sample size algorithms more 
complex than parallel CRTs

• more design parameters (# of clusters, 
cluster-period sizes, and ICCs)

• If not model 1, need CAC (decay) in 
addition to the within-period ICC

A select summary of available tools 
for computing power based on 
(linear) mixed models

• Linear mixed model approximation for 
binary outcomes may be inaccurate 
(Zhou et al., Biostatistics, 2020)

Software Outcome Feature

steppedwedge (Stata)

Hemming and Girling (2014)

Continuous Model 1

Binary Linear mixed model 

approximation

SWSamp (R)

Baio et al. (2015, Trials)

Continuous Model 1

Binary Linear mixed model 

approximation

swCRTdesign (R)

Vodal et al. (2020)

Continuous Model 1-2 and others

Binary Linear mixed model 

approximation

swdpwr (R)

%swdpwr (SAS Macro)

Chen et al. (2021+)

Continuous Model 1-2 (allow cohort designs)

Binary Linear mixed probability model 

(with the correct binomial 

variance)

Shiny CRT Calculator

(Hemming et al., IJE 2020)

Continuous Model 1-3 (allow cohort designs)

Binary Linear mixed model 

approximation



Sample size calculation requires ICC and CAC

• Recommended to calculate using 
routinely collected data

• Published trials reporting ICCs and 
CAC (similar population and outcome)

• Databases or publications that report 
lists of ICCs
• Clinical outcomes: ICCs typically ≤ 0.05

• Process measures: ICC typically larger, up 
to 0.15

• CAC from 0.6 to 0.8 considered reasonable

• Sensitivity analysis across a range of 
plausible values



CONSORT extension to SW-CRTs

• CONSORT item 17a: Outcomes and estimation (Hemming et al., 2018 BMJ)

• CONSORT cluster extension – Results at the individual or cluster level as applicable and a 
coefficient of intracluster correlation for each primary outcome

• Extension for SW-CRTs – For each primary and secondary outcome, results for each 
treatment condition, and the estimated effect size and its precision; any correlations (or 
covariances) and time effects estimated in the analysis.

• Reporting any estimated ICCs (and their uncertainty) can be informative for the 
planning of future trials (CONSORT SW-CRT extension item 7)

• Relatively few studies recognize CAC, and few empirical estimates are currently 
available (e.g., CLOUD databank study from the Monash group; in press at 
Clinical Trials)



III. Design and Analysis of SW-CRTs with 
Marginal Models



Alternative to mixed-effects models – marginal models

• Relatively rich literature on SW-CRTs based linear mixed models with a 
continuous outcome (Li et al. 2020 SMMR)

• Generalized linear mixed models with non-identity link?
• Requires “more effort” for fitting complex random-effects models (e.g., exponential decay)

• ICC may be defined as a complex function of variance components

• Interpretation of variance components depends on the choice of link function, and hard to 
standardize from a reporting perspective

• Marginal models can be attractive because (Preisser et al., 2003 Stat Med)

• Population-averaged interpretation of regression parameters – policy implications

• Separately specify mean model and ICC model – ICC defined on the natural scale of 
outcome; easier to standardize reporting

• Robust sandwich variance (empirical option in SAS GLIMIIX) accounts for ICC model 
misspecification



Essential ingredients of marginal models for SW-CRTs

• Generalized linear mean model
𝑔 𝐸 𝑌𝑖𝑗𝑘 = 𝜇 + 𝛽𝑗 + 𝛿𝑋𝑖𝑗

• 𝑔 is link function

• 𝜇 is the overall mean

• 𝛽𝑗 is fixed categorical secular trend (time effect)

• 𝛿 is the intervention effect

• Working correlation (ICC) model:
𝑹𝑖 = 𝑐𝑜𝑟𝑟 𝒀𝑖

• Where 𝒀𝑖 = 𝑌𝑖11, 𝑌𝑖12, … , 𝑌𝑖𝑇𝑁
′ is the collection 

of all outcomes in a cluster over all periods

• Estimation and inference of treatment effect and 
ICCs via the method of Generalized Estimating 
Equations (GEE)



Sample size for marginal models

• Unlike other contexts, ICC parameters are of interest in SW-CRTs for many reasons

• Whatever the link function for the mean model, ICCs in marginal models are on the 
natural scale of outcome

• Easier to standardize reporting and plug in for sample size calculation

• Sample size formulas and algorithms available for continuous and binary outcomes, for 
several correlation models (nested exchangeable and decay) and even for cohort designs



Sample size tools for marginal models

• With continuous outcomes, sample size and power calculation based on GEE are no 
different from linear mixed models 

• With binary outcomes, sample size and power calculation based on GEE are currently only 
implemented in swdpwr R package and %swdpwr SAS macro (Chen et al., 2021+)

• Currently assume the nested and block exchangeable ICC models (Li et al., 2018 
Biometrics)

• More software tools are under development, with a focus on binary/count outcomes and 
decaying correlation models 

• Forthcoming Stata package integrated in the power command: power swgee (Gallis et al., 
2021+)

• Forthcoming SAS macro and R packages addressing incomplete stepped wedge designs, and 
cluster size variations



Potential issues with marginal models in SW-CRTs

• Design and analysis should be consistent –
same analysis model for sample size and 
primary analysis

• Despite conceptual advantages, there can 
be operational challenges 

• Choice of working correlation model

• Computational scalability with enormous 
cluster sizes in pragmatic trials

• Concerns on small-sample validity of the robust 
sandwich variance

• Software for simultaneously estimating treatment 
effects and ICCs with GEE



Choice of working correlation model

• Independence working correlation

• Computationally convenient

• Unbiased, and correlation fixed by sandwich 
variance

• Many existing software

• Nested exchangeable or exponential decay 
working correlation

• Requires more computational effort

• Not as many software

• Independence working correlation leads to 
inefficient treatment effect estimator even with 
equal cluster sizes (Tian et al. 2021+; relative 
efficiency curve shown)



Choice of working correlation model – implications on design

• Number of clusters required for Washington State EPT study under true (independence) ICC 
models (Tian et al, 2021+)

• # of periods = 5

• Mean cluster period sizes ≈ 300

• Within-period ICC = 0.007; CAC = 0.5 (Nested exchangeable); CAC = 0.7 (exponential decay)

• Coefficient of variation (CV) measuring between cluster variability in sizes



Large cluster sizes in pragmatic SW-CRTs

• Estimating ICCs through GEE is a computationally 
challenging task with large cluster sizes

• In the Washington EPT study, the cluster sizes range 

from 277 to 5393; require enumeration of 
5393
2

≈

𝟏𝟒. 𝟓 million residual cross-products terms in one 
cluster to form the GEE for ICC parameters

• Without individual-level covariates, we have 
developed a new GEE approach that takes only 
cluster-period means (Li et al., 2021 Biostatistics)

• Simultaneously estimate treatment effects and (bias-
corrected) ICCs along with their standard errors

• Circumvent computational challenges as the new 
“cluster size” = number of periods

• Implemented in a recent R package geeCRT



Small-sample correction to sandwich variance

• Intuition: the so-called sandwich variance (middle part) underestimates the true variance 
with limited number of clusters (<= 30)

• Review of SW-CRTs suggests median # of clusters is only 20.5 (Grayling et al., 2017 Trials)

• Active pursuit even for parallel CRTs (Li and Redden, 2014 Stat Med; Ford and Westgate, 2017 Biom J)

• Investigations on bias-corrected sandwich variance for small SW-CRTs with converging 
recommendations (Ford and Westgate, 2020 Stat Med; Thompson et al. 2020 SMMR)



Small-sample correction to sandwich variance – Cont’d

Ref: Ford and 

Westgate, 2020 

Stat Med



Software tools for fitting marginal models in SW-CRTs

Several widely-used routines 
available in SAS and R

• Does not always take two-level 
correlation models

• Not always come with small-sample 
corrections

The cluster-period GEE is recently 
implemented in R (geeCRT), but 
currently only supports binary 
outcomes with logistic link function

• More components to be developed, 
allowing for other types of outcomes, 
and ICC models appropriate for SW-
CRTs

Software Feature Comment

gee/geesmv/saws 

(R)

ICC model Support EX but not NEX or ED

Small-sample variance MD, KC, FG, MBN and more

geeglm (R) ICC model EX and NEX, but not ED

Small-sample variance Not supported

GEECORR 

(SAS Macro)

ICC model EX and NEX, can adapt for ED

Small-sample variance MD, KC

PROC GLIMMIX 

(SAS)

ICC model Support EX but not NEX or ED

Small-sample variance MD, KC, FG, MBN

xtgeebcv (Stata)

(Gallis et al., 2020)

ICC model Support EX but not NEX or ED

Small-sample variance MD, KC, FG, MBN

geeCRT (R)

(Yu et al., 2021)

ICC model Support EX, NEX and ED

Small-sample variance MD, KC, FG (for treatment 

effect and ICC)

NEX: nested exchangeable / ED: exponential decay

MD: Mancl and DeRouen (2001, Biometrics)

KC: Kauermann and Carroll (2001, JASA)

FG: Fay and Graubard (2001, Biometrics)

MBN: Morel et al. (2003, Biom J)



IV. Concluding Remarks



Choice of analytical methods for SW-CRTs

• There is no consensus on “best” models for design and analysis

• Mixed-effects models and marginal models each have their pros and limitations；
choice can depend on the desired interpretation and research question

• Methods themselves are not competing, they offer complementary approaches to address the 
same problem (estimate treatment effect and report desired correlation parameters)

• Need to consider small sample corrections to maintain valid inference

• CONSORT extension to SW-CRTs recommended clear descriptions of 
assumptions and model specification; and to report ICCs (need more empirical 
estimates)

• Recommend to work with a statistician starting from the design stage



Common mis-conceptions

• Mis-conception 1: By choosing a stepped wedge design, I can avoid logistical challenges

• While stepped wedge designs have advantages, they can be challenging to implement because 

• One needs to ensure all sites adhere to implementation schedule 

• Can increase the total duration of the study

• Vulnerable to external interferences

• Increase the data collection burden

• Mis-conception 2: I can run my cluster randomized trials with only 4 clusters as long as my sample 
size formula shows I have 80% power

• While there are small-sample corrections that improve inference in the small sample setting 

• Relatively fewer simulations looked at <= 6 clusters for valid sample size and power performance

• 4 clusters may not have the desired level of power if we start to bring in the concept of CAC (underlying 
CAC = 1 assumption is not always plausible, but is likely what is needed to observe the above results)

• Limit generalizability of trial

Slide credited to Dr. Monica Taljaard 



Entry point to understanding the evolving literature



References

• Hemming, K., & Taljaard, M. (2020). Reflection on modern methods: when is a stepped-wedge cluster 
randomized trial a good study design choice?. International journal of epidemiology, 49(3), 1043-1052.

• Taljaard, M., Teerenstra, S., Ivers, N. M., & Fergusson, D. A. (2016). Substantial risks associated with 
few clusters in cluster randomized and stepped wedge designs. Clinical Trials, 13(4), 459-463.

• Li, F., Hughes, J. P., Hemming, K., Taljaard, M., Melnick, E. R., & Heagerty, P. J. (2020). Mixed-effects 
models for the design and analysis of stepped wedge cluster randomized trials: An overview. Statistical 
Methods in Medical Research, 0962280220932962.

• Golden, M. R., Kerani, R. P., Stenger, M., Hughes, J. P., Aubin, M., Malinski, C., & Holmes, K. K. 
(2015). Uptake and population-level impact of expedited partner therapy (EPT) on Chlamydia 
trachomatis and Neisseria gonorrhoeae: the Washington State community-level randomized trial of 
EPT. PLoS Med, 12(1), e1001777.

• Bennett, P. N., Daly, R. M., Fraser, S. F., Haines, T., Barnard, R., Ockerby, C., & Kent, B. (2013). The 
impact of an exercise physiologist coordinated resistance exercise program on the physical function of 
people receiving hemodialysis: a stepped wedge randomised control study. BMC nephrology, 14(1), 1-
7.

• Copas, A. J., Lewis, J. J., Thompson, J. A., Davey, C., Baio, G., & Hargreaves, J. R. (2015). Designing 
a stepped wedge trial: three main designs, carry-over effects and randomisation approaches. Trials, 
16(1), 1-12.



References – Cont’d 

• Barker, D., McElduff, P., D’Este, C., & Campbell, M. J. (2016). Stepped wedge cluster randomised
trials: a review of the statistical methodology used and available. BMC medical research methodology, 
16(1), 1-19.

• Hussey, M. A., & Hughes, J. P. (2007). Design and analysis of stepped wedge cluster randomized trials. 
Contemporary clinical trials, 28(2), 182-191.

• Hooper, R., Teerenstra, S., de Hoop, E., & Eldridge, S. (2016). Sample size calculation for stepped 
wedge and other longitudinal cluster randomised trials. Statistics in medicine, 35(26), 4718-4728.

• Kasza, J., Hemming, K., Hooper, R., Matthews, J. N. S., & Forbes, A. B. (2019). Impact of non-uniform 
correlation structure on sample size and power in multiple-period cluster randomised trials. Statistical 
methods in medical research, 28(3), 703-716.

• Kasza, J., & Forbes, A. B. (2019). Inference for the treatment effect in multiple-period cluster 
randomised trials when random effect correlation structure is misspecified. Statistical methods in 
medical research, 28(10-11), 3112-3122.

• Hemming, K., & Girling, A. (2014). A menu-driven facility for power and detectable-difference 
calculations in stepped-wedge cluster-randomized trials. The Stata Journal, 14(2), 363-380.

• Baio, G., Copas, A., Ambler, G., Hargreaves, J., Beard, E., & Omar, R. Z. (2015). Sample size 
calculation for a stepped wedge trial. Trials, 16(1), 1-15.



References – Cont’d 

• Voldal, E. C., Hakhu, N. R., Xia, F., Heagerty, P. J., & Hughes, J. P. (2020). swCRTdesign: An R Package for Stepped 
Wedge Trial Design and Analysis. Computer methods and programs in biomedicine, 196, 105514.

• Chen, J., Zhou, X., Li, F., & Spiegelman, D. (2020). swdpwr: A SAS Macro and An R Package for Power Calculation 
in Stepped Wedge Cluster Randomized Trials. arXiv preprint arXiv:2011.06031.

• Hemming, K., Kasza, J., Hooper, R., Forbes, A., & Taljaard, M. (2020). A tutorial on sample size calculation for 
multiple-period cluster randomized parallel, cross-over and stepped-wedge trials using the Shiny CRT Calculator. 
International journal of epidemiology, 49(3), 979-995.

• Zhou, X., Liao, X., Kunz, L. M., Normand, S. L. T., Wang, M., & Spiegelman, D. (2020). A maximum likelihood 
approach to power calculations for stepped wedge designs of binary outcomes. Biostatistics, 21(1), 102-121.

• Martin, J., Girling, A., Nirantharakumar, K., Ryan, R., Marshall, T., & Hemming, K. (2016). Intra-cluster and inter-
period correlation coefficients for cross-sectional cluster randomised controlled trials for type-2 diabetes in UK 
primary care. Trials, 17(1), 1-12.

• Hemming, K., Taljaard, M., McKenzie, J. E., Hooper, R., Copas, A., Thompson, J. A., ... & Grimshaw, J. M. (2018). 
Reporting of stepped wedge cluster randomised trials: extension of the CONSORT 2010 statement with explanation 
and elaboration. bmj, 363.

• Preisser, J. S., Young, M. L., Zaccaro, D. J., & Wolfson, M. (2003). An integrated population‐averaged approach to 
the design, analysis and sample size determination of cluster‐unit trials. Statistics in medicine, 22(8), 1235-1254.



References – Cont’d 
• Li, F., Turner, E. L., & Preisser, J. S. (2018). Sample size determination for GEE analyses of stepped wedge cluster 

randomized trials. Biometrics, 74(4), 1450-1458.

• Li, F. (2020). Design and analysis considerations for cohort stepped wedge cluster randomized trials with a decay 
correlation structure. Statistics in medicine, 39(4), 438-455.

• Li, F., Yu, H., Rathouz, P. J., Turner, E. L., & Preisser, J. S. (2021). Marginal modeling of cluster-period means and 
intraclass correlations in stepped wedge designs with binary outcomes. Biostatistics. 

• Tian, Z., Preisser, J., Esserman, D., Turner, E., Rathouz, P., & Li, F. (2021). Impact of unequal cluster sizes for GEE 
analyses of stepped wedge cluster randomized trials with binary outcomes. medRxiv.

• Ford, W. P., & Westgate, P. M. (2020). Maintaining the validity of inference in small‐sample stepped wedge cluster 
randomized trials with binary outcomes when using generalized estimating equations. Statistics in Medicine, 39(21), 
2779-2792.

• Thompson, J. A., Hemming, K., Forbes, A., Fielding, K., & Hayes, R. (2020). Comparison of small-sample standard-
error corrections for generalised estimating equations in stepped wedge cluster randomised trials with a binary 
outcome: A simulation study. Statistical Methods in Medical Research, 09622802209

• Woertman, W., de Hoop, E., Moerbeek, M., Zuidema, S. U., Gerritsen, D. L., & Teerenstra, S. (2013). Stepped wedge 
designs could reduce the required sample size in cluster randomized trials. Journal of clinical epidemiology, 66(7), 
752-758.



References – Cont’d 

• Gallis, J. A., Li, F., & Turner, E. L. (2020). xtgeebcv: a command for bias-corrected sandwich variance 
estimation for Gee analyses of cluster randomized trials. The Stata Journal, 20(2), 363-381.

• Mancl, L. A., & DeRouen, T. A. (2001). A covariance estimator for GEE with improved small‐sample 
properties. Biometrics, 57(1), 126-134.

• Kauermann, G., & Carroll, R. J. (2001). A note on the efficiency of sandwich covariance matrix 
estimation. Journal of the American Statistical Association, 96(456), 1387-1396.

• Fay, M. P., & Graubard, B. I. (2001). Small‐sample adjustments for Wald‐type tests using sandwich 
estimators. Biometrics, 57(4), 1198-1206.

• Morel, J. G., Bokossa, M. C., & Neerchal, N. K. (2003). Small sample correction for the variance of 
GEE estimators. Biometrical Journal: journal of mathematical methods in biosciences, 45(4), 395-409.

• Shing, T. L., Preisser, J. S., & Zink, R. C. (2020). GEECORR: A SAS macro for regression models of 
correlated binary responses and within-cluster correlation using generalized estimating equations. 
arXiv preprint arXiv:2011.11592.




